Benchmarking  enables users to evaluate their PC performance, to identify potential bottlenecks in hardware and find out the right system upgrades.

Several different types of benchmarks are available for evaluating a system’s performance. Some use synthetic tests that don’t necessarily reflect real-world usage, while others employ scripted tests that rely on actual applications and simulated real-world workloads. Some benchmarks assess the performance of a single component, while others measure total system performance.

Benchmarking FAQ’s

Before running any benchmarks you must follow some guidelines related to both hardware and software  in order to avoid potential damage to your system and to ensure best results.

Hardware Guidelines

First you need to ensure that all such components are in working condition,and properly cooled . If you have a component that is unstable or not working properly, benchmark could make it kill. Also, an inadequately cooled or underpowered device that works most of the time may become unstable under stress.

Software Guidelines

  • Make sure that operating system, applications, and drivers must be up to date without any issues.
  • Delete any temporary files and stop running applications.


Benchmark Components

CPU Benchmarking

One of the popular CPU benchmark is Cinebench.

CINEBENCH is a real-world cross platform test suite that evaluates your computer’s performance capabilities. CINEBENCH is based on MAXON’s award-winning animation software CINEMA 4D, which is used extensively by studios and production houses worldwide for 3D content creation. MAXON software has been used in blockbuster movies such as Spider-Man, Star Wars, The Chronicles of Narnia and many more.

CINEBENCH is the perfect tool to compare CPU and graphics performance across various systems and platforms (Windows and Mac OS X). And best of all: It’s completely free.


The test procedure consists of two main components – the graphics card performance test and the CPU performance test.

Main Processor Performance (CPU)

The test scenario uses all of your system’s processing power to render a photorealistic 3D scene (from the viral “No Keyframes” animation by AixSponza). This scene makes use of various algorithms to stress all available processor cores.

In fact, CINEBENCH can measure systems with up to 64 processor threads. ThIS test scene contains approximately 2,000 objects which in turn contain more than 300,000 polygons in total, and uses sharp and blurred reflections, area lights, shadows, procedural shaders, antialiasing, and much more. The result is displayed in points (pts). The higher the number, the faster your processor.

You can find more specific technical information on this on the tech-page of CINEBENCH.


Rendering test (accelerated)

Graphics Card Performance (OpenGL)

This procedure uses a complex 3D scene depicting a car chase (by renderbaron) which measures the performance of your graphics card in OpenGL mode. The performance depends on various factors, such as the GPU processor on your hardware, but also on the drivers used. The graphics card has to display a huge amount of geometry (nearly 1 million polygons) and textures, as well as a variety of effects, such as environments, bump maps, transparency, lighting and more to evaluate the performance across different disciplines and give a good average overview of the capabilities of your graphics hardware. The result given is measured in frames per second (fps). The higher the number, the faster your graphics card.

You can find more specific technical information on this on the CINEBENCH tech page.


Graphics Card Benchmarking

Futuremark’s3DMark 7 is a popular tool that provides an overall 3DMark score, as well as numerical results for each of the individual tests that contribute to the final score. Another handy synthetic benchmark is Unigine Heaven. Heaven can test a GPU’s performance using DirectX 9, 10, or 11 or OpenGL paths, with varying levels of image quality and tessellation. Heaven’s results identify both an overall score and a frame rate.

RAM Benchmarking

AIDA64 Extreme Edition has an excellent built-in memory benchmark that tests read, write, and copy bandwidth, as well as latency; but it is available only as a limited trial unless you pay for the full edition of the tool.

The free edition of SiSoft SANDRA 2012 offers memory bandwidth and latency tests, too. It reports bandwidth scores in gigabytes per second (GBps) and latency in nanoseconds. The tests are easy to run and take moments to complete. An Intel Core i7-2700K-based system with 8GB of DDR3-1333MHz system memory running in a dual-channel configuration (two memory sticks) should offer about 16 GBps of bandwidth at an access latency in the 29ns range. Higher clocked memory should deliver more bandwidth and lower latency.


Storage (HDD/SSD) Benchmarking

To test the performance of a hard drive or solid-state drive adequately, your best bet is to use a benchmark that evaluates read and write transfer speeds (with both sequential and random workloads), as well as access latency. Trace-based tests, like those used in PCMark, that track performance over time with simulated application workloads are also very useful.

One of the better free tools available for testing a drive’s performance is CrystalDiskMark. This benchmark is particularly useful because it tests both sequential and random read and write speeds with both large and small block sizes, and with queue depths of up to 32. A SATA II Corsair solid-state drive earned the scores shown in the screenshot at right. Hard-disk drive scores will be much lower, but most newer SATA III SSDs will score higher.

CrystalDiskMark doesn’t report access latency, however, so it’s a good idea to use a tool such as HD Tune, IOMeter, or the Physical Disk Benchmark in SiSoft SANDRA 2012 for this purpose.

Total System Benchmarking

 starting from Windows Vista the operating system itself has a built-in System benchmark tool called Windows Experience Index (WEI) but  isn’t a good choice instead of that you can prefer alternatives like  Sysmark or PCMark 7.
PCMark 7 runs a wide range of tests that tax CPU, GPU, memory, and disk performance; and it generates scores for each test–with higher scores reflecting better performance.

Understanding the results

Most benchmarks scores are easy to understand. But keep in mind that higher scores don’t always point to better performance.